Delhi School of Economics Department of Economics

Entrance Examination for M.A. Economics OPTION B June 30, 2007

Time: 3 hours

Maximum Marks: 100

General Instructions.

- \bullet Check that this Examination Question booklet has pages 1-7 and you have been given a blank Answer booklet for writing your answers. Do not start writing until instructed to do so by the invigilator.
- This examination has 2 parts. Part I carries 20 marks of compulsory questions. In Part II, you must answer 4 out of 7 questions, each carrying 20 marks.
- Fill in your Name and Roll Number on the small slip attached to the Answer booklet. Do **not** write this information anywhere else in this booklet.
- The candidature of anyone found engaging in illegal examination practices will be cancelled.

PART I

This compulsory part consists of 10 multiple choice questions. For each of them, indicating the correct answer in your Answer booklet will give you 2 marks, indicating a wrong answer will deduct 2/3rd of a mark, and not giving any answer will give a zero mark.

A. If the statement "There exists a legislature and a party such that every legislator in that party pays taxes." is false, then which of the following statements must be true?

- (a) In every legislature and every party, all legislators do not pay taxes.
- (b) There exists a legislature such that every legislator in every party does not pay taxes.
- (c) In every legislature, there exists a party and a legislator in that party who does not pay taxes.
- (d) In every legislature and every party, there exists a legislator who does not pay taxes.
- B. If $f: \Re^n \to \Re$ is twice differentiable, concave and homogeneous of degree 1, then the Hessian matrix of f is
 - (a) negative definite
 - (b) positive definite
 - (c) singular
 - (d) non-singular
- C. If $f: \Re_+ \to \Re$ is defined by $f(x) = \int_x^{x^2} e^t dt$, then the derivative of f at x > 0 is
 - (a) $2xe^{x^2} e^x$
 - (b) $2xe^{x^2} + e^x$
 - (c) $(2x-1)e^{x^2}$
 - (d) $(2x-1)e^x$
- D. The sequence (x_n) , where $x_n = (-1)^n (1 + n^{-1})$ and n = 1, 2, ...,
 - (a) converges to 1
 - (b) converges to -1
 - (c) converges to 1 and -1
 - (d) converges to neither 1 nor -1

- E. The set $\bigcap_{n=1}^{\infty} (-1 n^{-1}, 1 + n^{-1})$ is identical to
 - (a) (-1,1]
 - (b) $\{-1,1\}$
 - (c) (-1,1)
 - (d) [-1, 1]
- F. For $x, y \in \mathbb{R}^n$, let $d(x, y) = \max\{|x_i y_i| \mid i = 1, ..., n\}$. Which of the following relations holds for all $x, y, z \in \mathbb{R}^n$?
 - (a) d(x, z) = d(x, y) + d(y, z)
 - (b) d(x,z) > d(x,y) + d(y,z)
 - (c) $d(x, z) \ge d(x, y) + d(y, z)$
 - (d) $d(x,z) \le d(x,y) + d(y,z)$
- G. Given sets X, Y, let $X \times Y = \{(x, y) \mid x \in X \text{ and } y \in Y\}$ and let $X Y = \{x \in X \mid x \notin Y\}$. Which of the following formulae is generally correct for sets A, B and C?
 - (a) $(A B) \times C = (B \times C) (A \times C)$
 - (b) $(A B) \times C = (A \times C) (B \times C)$
 - (c) $(A B) \times C = (A \times C) B$
 - (d) $(A B) \times C = A (B \times C)$
- H. The average travel time to a distant city is w hours by train or z hours by bus. A man cannot decide whether to take the train or the bus, so he tosses a coin. What is his expected travel time?
 - (a) 2(w+z)
 - (b) 2(w+z)/(w-z)
 - (c) (w+z+2)/2
 - (d)None of the above
- I. The coefficient of x^2 in the polynomial
 - $(1-x)(1+2x)(1-3x)\dots(1+14x)(1-15x)$ is
 - (a) -121
 - (b) -191
 - (c) -255
 - (d) -291

J. A continuous random variable has the probability density function f(x) = 1/3, for x between -1 and +2, and 0 elsewhere. Its mean, variance and median are:

- (a) (1, 3/4, 1/2)
- (b)(1/2,3/4,1/2)
- (c) (1/2, 1, 1)
- (d) (1/2, 1, 1/2)

PART II

Answer any 4 of the 7 questions below. Each question is worth 20 marks.

- 1. Compute the required probabilities in each of the following cases:
 - (a) Consider two events A and B such that $Pr(A) = \frac{1}{3}$ and $Pr(B) = \frac{1}{2}$. Determine the value of $Pr(BA^c)$ for each of the following conditions:
 - \bullet i. A and B are disjoint
 - ii. $A \subset B$
 - iii. $Pr(AB) = \frac{1}{8}$.
 - (b) If four dice are rolled, what is the probability that each of the four numbers that appear will be different?
 - (c) A deck of thoroughly shuffled cards is dealt out to 4 players, so that each of them receive 13 cards. What is the probability that each player will receive exactly one ace?
 - (d) Consider an experiment where the sample space contains four outcomes $\{s_1, s_2, s_3, s_4\}$, and suppose that the probability of each outcome is $\frac{1}{4}$. Let the three events A, B and C be defined as follows:

$$A = \{s_1, s_2\}, B = \{s_1, s_3,\} \text{ and } C = \{s_1, s_4\}$$

Are these events independent? Are they pairwise independent?

- (e) In the city of Delhi, 50% of eligible voters most prefer the Congress Party, 30% most prefer the BJP, and the remaining 20% most prefer other parties. It turns out that 82% of those that most prefer the Congress, 65% of those that most prefer the BJP, and half of the third group voted in the last election. If a citizen (eligible to vote) is picked at random, and it is found that he did not vote in the last election, what is the probability that the Congress is his/her most preferred party?
- (f) Suppose that a fire can occur at any one of five points along a road. These points are given by {-3,-1,0,1,2} and the probabilities associated with these five points are given by {.2,.1, .1, .4, .2}. At what point along the road should a fire engine wait to minimize the expected value of the square of the distance that it must travel to the next fire?
- 2. (a) Suppose that the random variables $X_1, ... X_n$ form a random sample from a Bernoulli distribution for which the parameter θ is unknown ($0 \le \theta \le 1$). Consider the observed values $x_1, ... x_n$, where each x_i is either 0 or 1:
 - i. Write down the likelihood function for the sample.
 - ii. Use this to compute the maximum likelihood estimate of θ .
 - (b) Suppose a point in the xy plane is chosen at random from the interior of a circle for which the equation is $x^2 + y^2 = 1$; and suppose that the probability that the point will belong to any region inside the circle is proportional to the area of that region. Let Z denote a random variable representing the distance from the center of the circle to the point. Find and sketch the distribution function of Z.
- 3. Imagine that you are to sample from a uniform distribution on the interval $(0, \theta)$, where the value of θ is unknown. You would like to test the hypothesis $H_0: \theta = 1$ against the alternative $H_1: \theta = 2$. Denote by α , the probability of rejecting the null hypothesis when it is true, and β the probability of not rejecting it when it is false.
 - (a) For a sample of size n = 1, find a test procedure for which $\alpha = 0$

and β is minimized, given this value of α . What is the value of β in this case?

- (b) For a sample $X_1, X_2, ... X_n$ of size n, what is the minimum value of β that can be attained among all procedures for which $\alpha = 0$?
- 4. Consider the vector space \Re^n , with the Euclidean norm $\| \cdot \|$. A point x is said to be a *closure point* of a set $P(P \subseteq \Re^n)$ if for all $\epsilon > 0$, there exists a point $p \in P$ such that $\|x p\| < \epsilon$. The set of all closure points of P is called the *closure of* P and denoted \overline{P} .

A point x is said to be an *interior point* of a set P if there is an open ball centred at x that is contained entirely in P. The set of all interior points of P is denoted int(P).

A set P is said to be *convex* if for every (x, y, t) such that $x \in P$, $y \in P$ and $t \in [0, 1]$, it is true that $tx + (1 - t)y \in P$.

- (a) Let $P \subseteq \Re^n$. Show that $\overline{\overline{P}} = \overline{P}$. (i.e., the closure of \overline{P} equals the closure of P).
- (b) Let $P \subseteq \Re^n$ be a convex set. Show that $\operatorname{int}(P)$ is a convex set.
- 5. (a) Let [a,b] and [c,d] be nonempty closed intervals in \Re . Let $f:[a,b]\times [c,d]\to \Re$ be a continuous function defined on the rectangle $[a,b]\times [c,d]$. Define a function $g:[a,b]\to \Re$ as follows. For every $x\in [a,b]$, let $g(x)=\max\{f(x,y)|y\in [c,d]\}$. Show that g is a continuous function.
 - (b) An ordered pair (a, b) of two objects a and b is defined to be the set $\{\{a\}, \{a, b\}\}$. Show that for any two ordered pairs (a, b) and (a', b'), (a, b) = (a', b') if, and only if, a = a' and b = b'.
- 6. (a) Show that for a sequence $\{x_m\}$ of real numbers to be a Cauchy sequence, it is necessary, but not sufficient that $|x_{m+1} x_m|$ converges to zero.
 - (b) Let X be an $n \times k$ real matrix, with k < n. Let R(X) be the range space of X, i.e., the space of all linear combinations of the columns of X. Let $R^{\perp}(X) = \{w \in \Re^n | w.z = 0, \text{ for all } z \in R(X)\}$. (In terms of coordinates, $w = (w_1, ..., w_n), z = (z_1, ..., z_n)$, so w.z is

defined to equal $\sum_{i=1}^{n} w_i z_i$). Show that if Rank(X) = k, then the subspace $R^{\perp}(X)$ has dimension (n-k).

7. (a) Show that the eigenvalues of the partitioned matrix

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$

(where A and B are square submatrices and 0 is a submatrix of zeros), are the eigenvalues of A and B.

(b) Suppose A ⊆ ℝ², and let B ⊆ ℝ be defined by B = {x ∈ ℝ|(x, y) ∈ A, for some y ∈ ℝ}
Prove, or provide a counterexample to, the statement: "If A is a closed set in ℝ², then B is a closed set in ℝ".